Christiane K. Bauer

Learn More
1. Voltage-dependent K+ currents were recorded in cultured tumour-derived anterior pituitary cells of the rat (GH3 cells) with the patch clamp technique. An inward-rectifying current is described which is found to be carried by K+. 2. In isotonic KCl, whole-cell inward K+ currents were elicited by hyperpolarizing pulses from a holding potential of -40 mV.(More)
The mechanism of thyrotropin-releasing hormone (TRH)-induced ether-a-go-go-related gene (erg) K+ current modulation was investigated with the perforated-patch whole-cell technique in clonal somatomammotroph GH3/B6 cells. These cells express a small endogenous erg current known to be reduced by TRH. GH3/B6 cells were injected with cDNA coding for rat erg1,(More)
1. The ether-à-go-go-related gene (erg)-like K+ current in rat lactotrophs from primary culture was characterized and compared with that in clonal rat pituitary cells (GH3/B6). The class III antiarrhythmic E-4031 known to block specifically erg K+ channels was used to isolate the erg-like current as the E-4031-sensitive current. The experiments were(More)
The functional role of the inward-rectifying erg-like K+ current in rat lactotrophs was studied by the use of a selective blocker, the class III antiarrhythmic agent E-4031. The erg-like current was measured as drug-sensitive current in physiological K+ gradient. In the range of the normal resting membrane potential of rat lactotrophs (around -45 mV) the(More)
 Hyperpolarization-elicited potassium currents in GH3/B6 cells bathed in high-potassium external solution were recorded to assess effects of the class III antiarrhythmic agent E-4031 on the inactivating inward-rectifying potassium current (I K,IR). E-4031 potently blocked IK,IR with an IC50 value of 10 nM. The complete block of I K,IR achieved with(More)
The biophysical properties of native cardiac erg1 and recombinant HERG1 channels have been shown to be influenced by the extracellular K(+) concentration ([K(+)](o)). The erg1 conductance, for example, increases dramatically with a rise in [K(+)](o). In the brain, where local [K(+)](o) can change considerably with the extent of physiological and(More)
Zimmermann-Laband syndrome (ZLS) is a developmental disorder characterized by facial dysmorphism with gingival enlargement, intellectual disability, hypoplasia or aplasia of nails and terminal phalanges, and hypertrichosis. We report that heterozygous missense mutations in KCNH1 account for a considerable proportion of ZLS. KCNH1 encodes the voltage-gated(More)
The expression of mRNA for voltage-dependent (Kv) and inward-rectifying K channels (Kir) was studied in clonal rat somato-mammotroph cells (GH3/B6 cells) and rat pituitary using reverse transcription-polymerase chain reaction (RT-PCR). In GH3/B6 cells transcripts for 16 different Kv channel alpha-subunits (seven Shaker-related: Kv1.2, Kv1.4, Kv1.5, Kv2.1,(More)
An endogenous inward-rectifying K+ current is described, which is present in native oocytes of some Xenopus laevis donors. Experiments were performed using defolliculated oocytes from donor frogs obtained from two different suppliers. In all oocytes from animals from one source, an inward-rectifying K+ current could be elicited with negative pulses from a(More)
Primary cultures containing a high percentage of lactotrophs were obtained by dissociating the pituitary of rats following 14–18 days of lactation. Lactotrophs with a distinctive appearance were recorded after 1–35 days in vitro and identified by immunocytochemical staining for prolactin. Whole-cell voltage clamp measurements in isotonic KCl solution from a(More)