Christiane Goepfert

Learn More
Since articular cartilage is subjected to varying loads in vivo and undergoes cyclic hydrostatic pressure during periods of loading, it is hypothesized that mimicking these in vivo conditions can enhance synthesis of important matrix components during cultivation in vitro. Thus, the influence of intermittent loading during redifferentiation of chondrocytes(More)
In present study we determined the long term in vivo integration and histological modeling of an in vitro engineered cartilage construct. Tissue engineered autologous cartilagenous tissue was cultured on calcium phosphate cylinders and implanted into osteochondral defects into the femoral condyles in minipigs. Radiological follow-up was performed at 2, 8,(More)
Bioreactor systems play an important role in tissue engineering, as they enable reproducible and controlled changes in specific environmental factors. They can provide technical means to perform controlled studies aimed at understanding specific biological, chemical or physical effects. Furthermore, bioreactors allow for a safe and reproducible production(More)
Adult cartilage has a limited healing capacity. Damages resulting from disease or injury increase over time and cause severe pain. One approach to reinstate the cartilage function is tissue engineering (TE). However, the generation of TE cartilage is time consuming and expensive and its properties are so far suboptimal. As in vivo cartilage is subject to(More)
Technical aspects play an important role in tissue engineering. Especially an improved design of bioreactors is crucial for cultivation of artificial three-dimensional tissues in vitro. Here formation of cartilage-carrier-constructs is used to demonstrate that the quality of the tissue can be significantly improved by using optimized culture conditions(More)
The objective of this work involves the development and integration of electrodes for the electrical stimulation of cells within a bioreactor. Electrodes need to fit properties such as biocompatibility, large reversible charge transfer and high flexibility in view of their future application as implants on the tympanic membrane. Flexible thin-film(More)
Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism(More)
The presented study is focused on the generation of osteochondral implants for cartilage repair, which consist of bone substitutes covered with in vitro engineered cartilage. Re-differentiation of expanded porcine cells was performed in alginate gel followed by cartilage formation in high-density cell cultures. In this work, different combinations of growth(More)
Because articular cartilage shows little intrinsic capacity of spontaneous regeneration, a variety of treatment options are currently at use to repair cartilage damage. One of these is the autologous osteochondral transplantation (AOT). The aim of the present work was to study the histological changes during the progress of 1 year after AOT in the knee(More)
One keypoint in the development of a biohybrid implant for articular cartilage defects is the specific binding of cartilage cells to a supporting structure. Mimicking the physiological adhesion process of chondrocytes to the extracellular matrix is expected to improve cell adhesion of in vitro cultured chondrocytes. Our approach involves coating of(More)