Learn More
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family(More)
The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local(More)
In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches(More)
Mycobacterium tuberculosis and Mycobacterium bovis cause tuberculosis, which is responsible for the deaths of more people each year than any other bacterial infectious disease. Disseminated disease with Mycobacterium bovis BCG, the only currently available vaccine against tuberculosis, occurs in immunocompetent and immunodeficient individuals. Although(More)
In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of(More)
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant-transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N-methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and(More)
Adaptation to male voices causes a subsequent voice to be perceived as more female, and vice versa. Similar contrastive aftereffects have been reported for phonetic perception, and in vision for face perception. However, while aftereffects in the perception of phonetic features of speech have been reported to persist even when adaptors were processed(More)
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in(More)
UNLABELLED Phosphatidylcholine (PC) is a rare membrane lipid in bacteria, but is crucial for virulence of the plant pathogen Agrobacterium tumefaciens and various other pathogens. Agrobacterium tumefaciens uses two independent PC biosynthesis pathways. One is dependent on the integral membrane protein PC synthase (Pcs), which catalyzes the conversion of(More)
Phosphatidylethanolamine (PE) and cardiolipin (CL) are major components of bacterial and eukaryotic membranes. In bacteria, synthesis of PE usually occurs via decarboxylation of phosphatidylserine (PS) by PS decarboxylases (Psd). CL is produced by various CL synthases (Cls). Membranes of the plant pathogen Xanthomonas campestris predominantly contain PE,(More)