Christiane Alba-Simionesco

Learn More
We present a review of experimental, theoretical, and molecular simulation studies of confinement effects on freezing and melting. We consider both simple and more complex adsorbates that are confined in various environments (slit or cylindrical pores and also disordered porous materials). The most commonly used molecular simulation, theoretical and(More)
We studied liquid water confined within nanopores which present a high level of hydrophobicity thanks to a new method of synthesis. We found that the liquid state persists down to temperatures much lower than in the bulk and in hydrophilic materials of comparable sizes, allowing us to define a thermodynamic limit for the melting/crystallization of water.
Experimental and theoretical studies have stressed the importance of flexibility for protein function. However, more local studies of protein dynamics, using temperature factors from crystallographic data or elastic models of protein mechanics, suggest that active sites are among the most rigid parts of proteins. We have used quasielastic neutron scattering(More)
We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules Ncorr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of(More)
We relate the dynamical behavior of molecular liquids confined in mesoscopic cylindrical pores to the thermodynamic properties, heat capacity and density and to the static structure by combining different experimental methods (H-NMR, calorimetry, elastic and inelastic neutron scattering, numerical simulations). The crystallization process is greatly reduced(More)
We present an extensive analysis of the proposed relationship [T. Scopigno et al., Science 302, 849 (2003)] between the fragility of glass-forming liquids and the nonergodicity factor as measured by inelastic x-ray scattering. We test the robustness of the correlation through the investigation of the relative change under pressure of the speed of sound,(More)
We used differential scanning calorimetry, neutron scattering, and proton NMR to investigate the phase behavior, the structure, and the dynamics of benzene confined in a series of cylindrical mesoporous materials MCM-41 and SBA-15 with pore diameters, d, between 2.4 and 14 nm. With this multitechnique approach, it was possible to determine the structure(More)
We present a consistent picture of the respective role of density (rho) and temperature (T) in the viscous slowing down of glassforming liquids and polymers. Specifically, based in part upon a new analysis of simulation and experimental data on liquid ortho-terphenyl, we conclude that a zeroth-order description of the approach to the glass transition (in(More)
We study the changes in the low-frequency vibrational dynamics of poly(isobutylene) under pressure up to 1.4 GPa, corresponding to a density change of 20%. Combining inelastic neutron, x-ray, and Brillouin light scattering, we analyze the variations in the boson peak, transverse and longitudinal sound velocities, and the Debye level under pressure. We find(More)
We study the pressure and temperature dependences of the dielectric relaxation of two molecular glass-forming liquids, dibutyl phthalate and m-toluidine. We focus on two characteristics of the slowing down of relaxation, the fragility associated with the temperature dependence and the stretching characterizing the relaxation function. We combine our data(More)