Learn More
The possible regulation of adenosine 3',5'-cyclic monophosphate (cAMP) accumulation by arachidonic acid (AA) was studied in segments, microdissected from the rat kidney, which are sensitive to arginine vasopressin (AVP). In the presence of 5 microM indomethacin, the addition of 5 microM AA did not impair AVP-dependent cAMP accumulation (measured during 4(More)
It appears difficult to build a coherent picture of the concentrating system of the mammalian renal medulla. This may be due to the diversity of the factors involved and to considerable interspecies differences. Several morphological adaptations that may be critical in the improvement of water conservation are described. They include variations in the(More)
Our understanding of renal Mg handling has been expanded in recent years with the use of electron probe, ultramicroanalysis, and fluorescent dye techniques to determine total Mg and free Mg2+ in individual tubule segments and cells, respectively. Recent studies have shown that [Mg2+]i is a highly mobile cation that may be altered by a number of influences(More)
Beta 1- and beta 2-adrenergic receptor (beta-ARs) expression in the thick ascending limb of rat kidney was studied at the level of mRNA and receptor coupling to adenylyl cyclase. Absolute quantitation of beta 1- and beta 2-AR mRNAs in microdissected nephron segments was performed with an assay based on reverse transcription and polymerase chain reaction,(More)
Expression and regulation of vasopressin V2 and V1a receptors were studied at the mRNA level in the rat kidney. Two V2 mRNA variants were identified and shown to arise from a single gene by alternative splicing using one donor and two different acceptor sites. The long (V2L) form encodes the adenylyl cyclase-coupled receptor. The short (V2S) form lacks the(More)
Calcitonin (CT) modulates rat intercalated cell (IC) functions of the rat cortical collecting duct (CCD) [E. Siga, B. Mandon, N. Roinel, and C. de Rouffignac. Am.J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F221-F227, 1993]. To characterize the specific function regulated by CT, rat CCDs were perfused in vitro. Total CO2 net fluxes (JtCO2,(More)
Micropuncture samples were collected from late proximal and early distal sites of the same nephron in nondiuretic young rats aged 13-15, 19-21, and 30-39 days. Plasma ultrafiltrate (UF), tubular fluid (TF), and final urine were analyzed for Cl, Na, K, Mg, P, and Ca concentrations by electron probe. Between days 13 and 39, the proximal convoluted tubule(More)
Recent studies from our laboratory have shown that in the cortical thick ascending limb of Henle's loop of the mouse (cTAL) Ca2+ and Mg2+ are reabsorbed passively, via the paracellular shunt pathway. In the present study, cellular mechanisms responsible for the hormone-stimulated Ca2+ and Mg2+ transport were investigated. Transepithelial voltages (PDte) and(More)
Magnesium is the fourth most abundant cation in the body and the second most common cation in the intracellular fluid. It is the kidney that provides the most sensitive control for magnesium balance. About a 80% of the total serum magnesium is ultrafilterable through the glomerular membrane. In all of the mammalian species studied to date, the proximal(More)
Several hormones stimulate the adenylate cyclase system of the thick ascending limb (TAL). There are, however, some species differences concerning the cyclase sensitivity and the hormonal response in this nephron segment. In the mouse, antidiuretic hormone (ADH), parathyroid hormone, glucagon, calcitonin, and isoproterenol stimulate Na+, Cl-, Mg2+, and Ca2+(More)