Christian Wäckerlin

Learn More
The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus.(More)
We investigated the magnetic properties of individual Ho atoms adsorbed on the (111) surface of Pt, which have been recently claimed to display single ion magnetic behavior. By combining x-ray absorption spectroscopy and magnetic dichroism measurements with ligand field multiplet calculations, we reveal a ground state which is incompatible with long spin(More)
We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on Cu(100) single-crystalline surfaces.(More)
A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit(More)
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).
Amazing ammonia: The molecular spin state of Ni(II) porphyrin, supported on a ferromagnetic Co surface, can be reversibly switched between spin-off (S = 0) and spin-on (S = 1) states upon coordination and decoordination of the gaseous ligand NH3, respectively (see picture). This finding clearly indicates the possible use of the system as a(More)
Sublimation of alkali halides (NaCl and LiCl) onto a pre-assembled hydrogen-bonded layer of TCNQ on Au(111) resulted in the formation of 2D ionic layers via a direct charge-transfer reaction without involvement of the substrate. The presented approach allows for the fabrication of different ionic layers, decoupled from the substrate and offering new,(More)
We investigate the effect of H adsorption on the magnetic properties of individual Co atoms on Pt(111) with scanning tunneling microscopy. For pristine Co atoms, we detect no inelastic features in the tunnel spectra. Conversely, CoH and CoH2 show a number of low-energy vibrational features in their differential conductance identified by isotope(More)
The presence of an oxygen reconstruction on the Cu(001) surface results in the self-metalation of 5,10,15,20-tetraphenylporphyrin (2HTPP) below room temperature (at ~285 K), in contrast to 2HTPP on the bare Cu(001) substrate, where a temperature of ~450 K is required. This study demonstrates the decisive impact of a surface reconstruction on the redox(More)