Learn More
All-trans retinoic acid (RA) has previously been shown to modulate the transcriptional properties of the retinoic acid receptor (RAR) and retinoid X receptor (RXR). The inability of all-trans RA to bind to RXR suggests that it may be metabolized to a more active high affinity ligand. We report here an experimental approach that has identified 9-cis RA as an(More)
All-trans-retinoic acid (RA) induces striking digit pattern duplications when locally applied to the developing chick limb bud. Instead of the normal digit pattern (234) a mirror-symmetrical 432234 pattern can be specified. Hence, RA closely mimics posterior limb bud tissue (the zone of polarizing activity, ZPA) that causes very similar duplications when(More)
Excess retinoids as well as retinoid deprivation cause abnormal development, suggesting that retinoid homeostasis is critical for proper morphogenesis. RALDH-2 and CYP26, two key enzymes that carry out retinoic acid (RA) synthesis and degradation, respectively, were cloned from the chick and show significant homology with their orthologs in other(More)
Hensen's node of amniotes, like the Spemann organizer of amphibians, can induce a second body axis when grafted into a host embryo. The avian node, as well as several midline structures originating from it (notochord, floor plate), can also induce digit pattern duplications when grafted into the chick wing bud. We report here that the equivalent of Hensen's(More)
We show that retinoid receptor antagonists applied to the presumptive wing region block the formation of a zone of polarizing activity (ZPA). This suggests a direct relationship between retinoid signaling and the establishment of the ZPA. We provide evidence that the Hox gene, Hoxb-8, is a direct target of retinoid signaling since exogenously applied RA(More)
It has long been suggested that the generation of biological patterns depends in part on gradients of diffusible substances. In an attempt to bridge the gap between this largely theoretical concept and experimental embryology, we have examined the physiology of diffusion gradients in an actual embryonic field. In particular, we have generated in the chick(More)
The face is one of the most intricately patterned structures in human and yet little is known of the mechanisms by which the tissues are instructed to grow, fuse, and differentiate. We undertook a study to determine if the craniofacial primordia used the same molecular cues that mediate growth and patterning in other embryonic tissues such as the neural(More)
In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic(More)
Genomes of animals contain between 15000 (e.g. Drosophila) and 50000 (human, mouse) genes, many of which encode proteins involved in regulatory processes. The availability of sequence data for many of these genes opens up opportunities to study complex genetic and protein interactions that underlie biological regulation. Many examples demonstrate that an(More)
Retinoids regulate various aspects of vertebrate development through the action of two types of receptors, the retinoic acid receptors (RARs) and the retinoid-X-receptors (RXRs). Although RXRs bind 9-cis-retinoic acid (9cRA) with high affinity, in vitro experiments suggest that RXRs are for the most part not liganded, but serve as auxiliary factors forming(More)