Christian T. Stoeck

Learn More
BACKGROUND The arrangement of myofibers in the heart is highly complex and must be replicated by injected cells to produce functional myocardium. A novel approach to characterize the microstructural response of the myocardium to ischemia and cell therapy, with the use of serial diffusion tensor magnetic resonance imaging tractography of the heart in vivo,(More)
In vivo imaging of cardiac 3D fibre architecture is still a practical and methodological challenge. However it potentially provides important clinical insights, for example leading to a better understanding of the pathophysiology and the follow up of ventricular remodelling after therapy. Recently, the acquisition of 2D multi-slice Diffusion Tensor Images(More)
PURPOSE In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. METHODS In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was(More)
In vivo imaging of the cardiac 3D fibre architecture is still a challenge, but it would have many clinical applications, for instance to better understand pathologies and to follow up remodelling after therapy. Recently, cardiac MRI enabled the acquisition of Diffusion Tensor images (DTI) of 2D slices. We propose a method for the complete 3D reconstruction(More)
Energy-harvesting devices attract wide interest as power supplies of today’s medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which(More)
PURPOSE Myocardial microstructure has been challenging to probe in vivo. Spin echo-based diffusion-weighted sequences allow for single-shot acquisitions but are highly sensitive to cardiac motion. In this study, the use of second-order motion-compensated diffusion encoding was compared with first-order motion-compensated diffusion-weighted imaging during(More)
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and(More)
PURPOSE To compare two coronary vein imaging techniques using whole-heart balanced steady-state free precession (SSFP) and a targeted double-oblique spoiled gradient-echo (GRE) sequences in combination with magnetization transfer (MT) preparation sequence for tissue contrast improvement. MATERIALS AND METHODS Nine healthy subjects were imaged with the(More)
PURPOSE To quantify the effect of sublingual isosorbide dinitrate (ISDN) administration on coronary magnetic resonance (MR) imaging. MATERIALS AND METHODS Written informed consent was obtained from all participants, and the HIPAA-compliant protocol was approved by the Institutional Review Board. Coronary MR imaging was performed at 1.5 T before and after(More)