Christian T. Jacobs

Learn More
The recomputability and reproducibility of results from scientific software requires access to both the source code and all associated input and output data. However, the full collection of these resources often does not accompany the key findings published in journal articles, thereby making it difficult or impossible for the wider scientific community to(More)
Exascale computing will feature novel and potentially disruptive hardware architectures. Exploiting these to their full potential is non-trivial. Numerical modelling frameworks involving finite difference methods are currently limited by the 'static' nature of the hand-coded discretisation schemes and repeatedly may have to be rewritten to run efficiently(More)
Ocean modelling requires the production of high-fidelity computational meshes upon which to solve the equations of motion. The production of such meshes by hand is often infeasible, considering the complexity of the bathymetry and coastlines. The use of Geographical Information Systems (GIS) is therefore a key component to discretising the region of(More)
Computer programming was once thought of as a skill required only by professional software developers. But today, given the ubiquitous nature of computation and data science it is quickly becoming necessary for all scientists and engineers to have at least a basic knowledge of how to program. Teaching how to program, particularly to those students with(More)
—Due to the fractal nature of the domain geometry in geophysical flow simulations, a completely accurate description of the domain in terms of a computational mesh is frequently deemed infeasible. Shoreline and bathymetry simplification methods are used to remove small scale details in the geometry, particularly in areas away from the region of interest. To(More)
Future architectures designed to deliver exascale performance motivate the need for novel algorithmic changes in order to fully exploit their capabilities. In this paper, the performance of several numerical algorithms, characterised by varying degrees of memory and computational intensity, are evaluated in the context of finite difference methods for fluid(More)
Extracting the optimal amount of power from an array of tidal turbines requires an intricate understanding of tidal dynamics and the effects of turbine placement on the local and regional scale flow. Numerical models have contributed significantly towards this understanding , and more recently, adjoint-based modelling has been employed to optimise the(More)
Increasing quantities of scientific data are becoming readily accessible via online repositories such as those provided by Figshare and Zenodo. Geoscientific simulations in particular generate large quantities of data, with several research groups studying many, often overlapping areas of the world. When studying a particular area, being able to keep track(More)
The opinions expressed in the abstracts are those of the authors and are not to be construed as the opinion of the publisher (Multimed Inc.), the organizers of the Third International Symposium on Hereditary Breast and Ovarian Cancer, or the Hereditary Breast and Ovarian Cancer Foundation. Although the publisher (Multimed Inc.) has made every effort to(More)
  • 1