Learn More
By differential screening of tumor necrosis factor ␣ (TNF-␣) and lipopolysaccharide (LPS)-activated endothelial cells (ECs), we have identified a cDNA clone that turned out to be a member of the inhibitor of apoptosis (iap) gene family. iap genes function to protect cells from undergoing apoptotic death in response to a variety of stimuli. These iap genes,(More)
Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway whose function is dependent on its expression levels. Although Bcl-2 expression is controlled by various mechanisms, post-translational modifications, such as ubiquitination and proteasomal degradation, have emerged as important regulators of Bcl-2 function. However, the(More)
Apoptosis-associated speck-like protein containing a Caspase recruitment domain (ASC) belongs to a large family of proteins that contain a Pyrin, AIM, ASC, and death domain-like (PAAD) domain (also known as PYRIN, DAPIN, Pyk). Recent data have suggested that ASC functions as an adaptor protein linking various PAAD-family proteins to pathways involved in(More)
Proteins containing PAAD [pyrin, AIM (absent-in-melanoma), ASC [apoptosis-associated speck-like protein containing a CARD (caspase-recruitment domain)] and DD (death domain)-like] (PYRIN, DAPIN) domains are involved in innate immunity, regulating pathways leading to nuclear-factor-kappa B (NF-kappa B) and pro-caspase-1 activation. Many PAAD-family proteins(More)
Periodic fever syndromes (PFSs) comprise a subset of the hereditary autoinflammatory disorders that are defined by recurrent self-resolving attacks of systemic inflammatory reactions in the absence of infection or autoimmunity. Recent advances have led to the discovery that members of a new family of genes, the PYRIN family, account for several hereditary(More)
The inhibitor of apoptosis (iap) proteins belong to a gene family that protect certain cell to undergo programmed cell death in response to a variety of stimuli. By differential screening we have identified a cDNA clone, designated piap, in porcine aortic endothelial cells (PAEC) that turned out by sequence comparison to be a porcine member of the iap(More)
Apoptosis (programmed cell death) plays important roles in many facets of normal mammalian physiology. Host-pathogen interactions have provided evolutionary pressure for apoptosis as a defense mechanism against viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses through NFkappaB induction. Proteins involved in apoptosis(More)
Cytosolic pathogen- and damage-associated molecular patterns are sensed by pattern recognition receptors, including members of the nucleotide-binding domain and leucine-rich repeat-containing gene family (NLR), which cause inflammasome assembly and caspase-1 activation to promote maturation and release of the inflammatory cytokines interleukin-1β (IL-1β)(More)
Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway. The oncogenic potential of Bcl-2 is well established, with its overexpression reported in various cancers. The antiapoptotic function of Bcl-2 is closely associated with its expression levels. Reactive oxygen and nitrogen species (ROS/RNS) are important intracellular signaling(More)
Inflammasomes represent 12 molecular platforms for the activation of inflammatory caspases and are essential for processing and secretion of the inflammatory cytokines IL-1␤ and IL-18. Multiple key proteins of inflamma-somes contain caspase recruitment domains (CARDs) or pyrin domains (PYDs). Dissecting CARD-and PYD-mediated interactions substantially(More)