Christian Stöckl

Learn More
A distinctive way of quantitatively imaging inertial fusion implosions has resulted in the characterization of two different types of electromagnetic configurations and in the measurement of the temporal evolution of capsule size and areal density. Radiography with a pulsed, monoenergetic, isotropic proton source reveals field structures through deflection(More)
Time-gated, monoenergetic radiography with 15-MeV protons provides unique measurements of implosion dynamics in direct-drive inertial-confinement fusion. Images obtained during acceleration, coasting, deceleration, and stagnation display a comprehensive picture of spherical implosions. Critical information inferred from such images, hitherto unavailable,(More)
The performance of triple-picket deuterium-tritium cryogenic target designs on the OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] is reported. These designs facilitate control of shock heating in low-adiabat inertial confinement fusion targets. Areal densities up to 300 mg/cm2 (the highest ever measured in cryogenic deuterium-tritium(More)
Radial profiles of nuclear burn in directly-driven, inertial-confinement-fusion implosions have been systematically studied for the first time using a proton emission imaging system sensitive to energetic 14.7-MeV protons from the fusion of deuterium (D) and 3-helium (3 He) at the OMEGA laser facility [T. R. Experimental parameters that were varied include(More)
Measurements from three classes of direct-drive implosions at the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] were combined with Monte-Carlo simulations to investigate models for determining hot-fuel areal density (ρR hot) in compressed, D 2-filled capsules, and to assess the impact of mix and other factors on the determination of(More)
The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with(More)
Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed(More)
Thin-foil targets were irradiated with high-power (1 ≤ P(L) ≤ 210 TW), 10-ps pulses focused to intensities of I>10(18) W/cm(2) and studied with K-photon spectroscopy. Comparing the energy emitted in K photons to target-heating calculations shows a laser-energy-coupling efficiency to hot electrons of η(L-e) = 20 ± 10%. Time-resolved x-ray emission(More)
Direct-drive implosions with 20-microm-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by hot electrons generated by two-plasmon-decay instability was reduced by more than approximately 40x and hot-electron temperature by(More)