Learn More
The stone-like otoliths from the ears of teleost fishes are involved in balance and hearing and consist of calcium carbonate crystallites embedded in a protein framework. We report that a previously unknown gene, starmaker, is required in zebrafish for otolith morphogenesis. Reduction of starmaker activity by injection of modified antisense oligonucleotides(More)
Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe(More)
Extracellular protein-protein interactions are essential for both intercellular communication and cohesion within multicellular organisms. Approximately a fifth of human genes encode membrane-tethered or secreted proteins, but they are largely absent from recent large-scale protein interaction datasets, making current interaction networks biased and(More)
The vast number of precise intercellular connections within vertebrate nervous systems is only partly explained by the comparatively few known extracellular guidance cues. Large families of neural orphan receptor proteins have been identified and are likely to contribute to these recognition processes but due to the technical difficulty in identifying novel(More)
Otoliths in bony fishes and otoconia in mammals are composite crystals consisting of calcium carbonate and proteins. These biominerals are part of the gravity and linear acceleration detection system of the inner ear. Mutations in otopetrin 1 have been shown to result in lack of otoconia in tilted and mergulhador mutant mice. The molecular function of(More)
The large EcoRI fragment of mouse ribosomal genes containing parts of the non-transcribed spacer, the external transcribed spacer located at the 5' end of the precursor molecule and about two thirds of the 18S sequence has been cloned in bacteriophage lambda gtWES. A physical map of the DNA was constructed by cleavage with several restriction endonucleases(More)
Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were(More)
Over 30 genes responsible for human hereditary hearing loss have been identified during the last 10 years. The proteins encoded by these genes play roles in a diverse set of cellular functions ranging from transcriptional regulation to K(+) recycling. In a few cases, the genes are novel and do not give much insight into the cellular or molecular cause for(More)
Extracellular interactions involving both secreted and membrane-tethered receptor proteins are essential to initiate signaling pathways that orchestrate cellular behaviors within biological systems. Because of the biochemical properties of these proteins and their interactions, identifying novel extracellular interactions remains experimentally challenging.(More)
The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of(More)