Christian S. Jensen

Learn More
The conventional Internet is acquiring a geo-spatial dimension. Web documents are being geo-tagged, and geo-referenced objects such as points of interest are being associated with descriptive text documents. The resulting fusion of geo-location and documents enables a new kind of top-k query that takes into account both location proximity and text(More)
Spatio-temporal databases deal with geometries changing over time. The goal of our work is to provide a DBMS data model and query language capable of handling such time-dependent geometries, including those changing continuously that describe <italic>moving objects</italic>. Two fundamental abstractions are <italic>moving point</italic> and <italic>moving(More)
Spatiotemporal applications, such as fleet management and air traffic control, involving continuously moving objects are increasingly at the focus of research efforts. The representation of the continuously changing positions of the objects is fundamentally important in these applications. This paper reports on on-going research in the representation of the(More)
As mobile devices with positioning capabilities continue to proliferate, data management for so-called trajectory databases that capture the historical movements of populations of moving objects becomes important. This paper considers the querying of such databases for convoys, a convoy being a group of objects that have traveled together for some time.(More)
This document contains definitions of a wide range of concepts specific to and widely used within temporal databases. In addition to providing definitions, the document also includes separate explanations of many of the defined concepts. Two sets of criteria are included. First, all included concepts were required to satisfy four relevance criteria, and,(More)
In a mobile service scenario, users query a server for nearby points of interest but they may not want to disclose their locations to the service. Intuitively, location privacy may be obtained at the cost of query performance and query accuracy. The challenge addressed is how to obtain the best possible performance, subjected to given requirements for(More)
The domain of spatiotemporal applications is a treasure trove of new types of data and queries. However, work in this area is guided by related research from the spatial and temporal domains, so far, with little attention towards the true nature of spatiotemporal phenomena. In this work, the focus is on a spatiotemporal sub-domain, namely the trajectories(More)
Advances in hardware-related technologies promise to enable new data management applications that monitor continuous processes. In these applications, enormous amounts of state samples are obtained via sensors and are streamed to a database. Further, updates are very frequent and may exhibit locality. While the R-tree is the index of choice for(More)
A wide range of database applications manage time-varying information. Existing database technology currently provides little support for managing such data. The research area of temporal databases has made important contributions in characterizing the semantics of such information and in providing expressive and efficient means to model, store, and query(More)
With the proliferation of wireless communications and the rapid advances in technologies for tracking the positions of continuously moving objects, algorithms for efficiently answering queries about large numbers of moving objects increasingly are needed. One such query is the reverse nearest neighbor (RNN) query that returns the objects that have a query(More)