Christian Rosenberger

Learn More
Experimental findings in vitro and in vivo illustrate enhanced hypoxia and the formation of reactive oxygen species (ROS) within the kidney following the administration of iodinated contrast media, which may play a role in the development of contrast media-induced nephropathy. Clinical studies indeed support this possibility, suggesting a protective effect(More)
Cellular responses to oxygen are increasingly recognized as critical in normal development and physiology, and are implicated in pathological processes. Many of these responses are mediated by the transcription factors HIF-1 and HIF-2. Their regulation occurs through oxygen-dependent proteolysis of the alpha subunits HIF-1alpha and HIF-2alpha, respectively.(More)
Hypoxia of the kidney in diabetes could predispose it to develop acute and chronic renal failure. To examine the relationship between renal hypoxia and renal failure, we measured hypoxia (as a pimonidazole adducts), hypoxia-inducible factors (HIFs), and a hypoxia target gene heme oxygenase-1. The studies were performed in rats with streptozotocin(More)
BACKGROUND AND OBJECTIVES Renal parenchymal Po(2) declines after the administration of iodinated radiocontrast agents, reaching critically low levels of approximately 10 mmHg in medullary structures. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this review, the causes of renal parenchymal hypoxia and its potential role in the pathogenesis of contrast(More)
Oxygen tensions in the kidney are heterogeneous, and their changes presumably play an important role in renal physiologic and pathophysiologic processes. A family of hypoxia-inducible transcription factors (HIF) have been identified as mediators of transcriptional responses to hypoxia, which include the regulation of erythropoietin, metabolic adaptation,(More)
Adaptation to hypoxic environment is conferred through hypoxia-inducible transcription factors (HIFs). We have previously shown that the HIF system is transiently activated in vivo in radiocontrast-induced acute renal failure, associated with profound hypoxia in the renal medulla. Medullary thick ascending limbs (mTALs), the most affected nephron segments(More)
Renal parenchymal hypoxia, documented under a variety of clinical conditions, conceivably contributes to the progression chronic kidney disease. In this review, normal physiologic medullary hypoxia and abnormal profiles of renal pO(2) in chronic kidney diseases are presented, and the mechanisms leading to anomalous renal tissue oxygenation are discussed.(More)
Hypoxia-inducible factor (HIF)-1alpha and -2alpha are key regulators of the transcriptional response to hypoxia and pivotal in mediating the consequences of many disease states. In the present work, we define their temporo-spatial accumulation after myocardial infarction and systemic hypoxia. Rats were exposed to hypoxia or underwent coronary artery(More)
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights(More)
The adaptation of erythropoietin production to oxygen supply is determined by the abundance of hypoxia-inducible factor (HIF), a regulation that is induced by a prolyl hydroxylase. To identify cells that express HIF subunits (HIF-1alpha and HIF-2alpha) and erythropoietin, we treated Sprague-Dawley rats with the prolyl hydroxylase inhibitor FG-4497 for 6 h(More)