Christian R Cioce

  • Citations Per Year
Learn More
A highly accurate aniostropic intermolecular potential for diatomic hydrogen has been developed that is transferable for molecular modeling in heterogeneous systems. The potential surface is designed to be efficacious in modeling mixed sorbates in metal-organic materials that include sorption interactions with charged interfaces and open metal sites. The(More)
Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic(More)
A polarizable and transferable intermolecular potential energy function, potentials with high accuracy, speed, and transferability (PHAST), has been developed from first principles for molecular nitrogen to be used in the modeling of heterogeneous processes such as materials sorption and separations. A five-site (van der Waals and point charge) anisotropic(More)
A new class of radical metal-carbene complex has been characterized as having Fischer-like orbital interactions and adjacent π acceptor stabilization. Density Functional Theory (DFT) along with Natural Bond Orbital (NBO) analysis and Charge Decomposition Analysis (CDA) has given insight into the electronics of this catalytic intermediate in an open-shell(More)
Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and(More)
Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn(2+) ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The(More)
  • 1