Learn More
—In this paper, we present various channel estimators that exploit the channel sparsity in a multicarrier underwater acoustic system, including subspace algorithms from the array precessing literature, namely root-MUSIC and ESPRIT, and recent compressed sensing algorithms in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP). Numerical(More)
—Compressive sensing is a topic that has recently gained much attention in the applied mathematics and signal processing communities. It has been applied in various areas, such as imaging, radar, speech recognition, and data acquisition. In communications, compressive sensing is largely accepted for sparse channel estimation and its variants. In this paper(More)
—In decentralized detection, local sensor observations have to be communicated to a fusion center through the wireless medium, inherently a multiple-access channel (MAC). As communication is bandwidth-and energy-constrained, it has been suggested to use the properties of the MAC to combine the sensor observations directly on the channel. Although this leads(More)
—In this paper, we propose a novel method for detection, synchronization and Doppler scale estimation for underwater acoustic communication using orthogonal frequency division multiplex (OFDM) waveforms. This new method involves transmitting two identical OFDM symbols together with a cyclic prefix, while the receiver uses a bank of parallel(More)
—Passive radar is a concept where illuminators of opportunity are used in a multi-static radar setup. New digital signals, like Digital Audio/Video Broadcast (DAB/DVB), are excellent candidates for this scheme, as they are widely available, can be easily decoded to acquire the noise-free signal, and employ orthogonal frequency division multiplex (OFDM).(More)
—To achieve reliable packet transmission over a wireless link without feedback, we propose a layered coding approach that uses error-correction coding within each packet and erasure-correction coding across the packets. This layered approach is also applicable to an end-to-end data transport over a network where a wireless link is the performance(More)
—We derive optimal memoryless relays using nonco-herent modulation over additive white Gaussian noise (AWGN) channels with or without fading. The derivation is flexible, as it can be applied to any binary hypothesis test regarding the observations at the relay. We investigate several channels, including random phase and fading, and apply different(More)
—In this paper we propose a progressive receiver for orthogonal-frequency-division-multiplexing (OFDM) transmission over time-varying underwater acoustic (UWA) channels. The progressive receiver is in nature an iterative receiver. However, it distinguishes itself from existing iterative receivers in that the system model for channel estimation and data(More)
In this paper we present a local interpolation-based variant of the well-known polar format algorithm used for synthetic aperture radar (SAR) image formation. We develop the algorithm to match the capabilities of the application-specific logic-in-memory processing paradigm, which off-loads lightweight computation directly into the SRAM and DRAM. Our(More)
—Passive radar is a concept where possibly multiple non-cooperative illuminators are used in a multi-static setup. A freely available signal, like radio or television, is decoded and used to identify moving airborne targets based on their Doppler shift. New digital signals, like Digital Audio/Video Broadcast (DAB/DVB), are excellent candidates for this(More)