Learn More
—Compressive sensing is a topic that has recently gained much attention in the applied mathematics and signal processing communities. It has been applied in various areas, such as imaging, radar, speech recognition, and data acquisition. In communications, compressive sensing is largely accepted for sparse channel estimation and its variants. In this paper(More)
—In this paper, we present various channel estimators that exploit the channel sparsity in a multicarrier underwater acoustic system, including subspace algorithms from the array precessing literature, namely root-MUSIC and ESPRIT, and recent compressed sensing algorithms in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP). Numerical(More)
Glial cells in the Drosophila embryonic nervous system can be monitored with the marker Reversed-polarity (Repo), whereas neurons lack Repo and express the RNA-binding protein ELAV (Embryonic Lethal, Abnormal Vision). Since the first description of the ELAV protein distribution in 1991 (Robinow and White), it is believed that ELAV is an exclusive neuronal(More)
Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine(More)
Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was(More)
—In decentralized detection, local sensor observations have to be communicated to a fusion center through the wireless medium, inherently a multiple-access channel (MAC). As communication is bandwidth-and energy-constrained, it has been suggested to use the properties of the MAC to combine the sensor observations directly on the channel. Although this leads(More)
Background: Cerebral microdialysis has been established as a monitoring tool in neurocritically ill patients suffering from severe stroke. The technique allows to sample small molecules in the brain tissue for subsequent biochemical analysis. In this study, we investigated the proteomic profile of human cerebral microdialysate and if the identified proteins(More)
Moderate hypothermia and application of brain-derived neurotrophic factor (BDNF) have separately been identified as neuroprotective strategies in experimental cerebral ischemia. To assess their separate and combined effects on striatal glutamate release in the hyperacute phase of stroke, we inserted microdialysis probes into the striatum of rats 2 h before(More)
We investigated levels and compositions of N-acylethanolamines (NAEs) and their precursors, N-acyl phosphatidylethanolamines (N-acyl PEs), in a rat stroke model applying striatal microdialysis for glutamate assay. Rats (n = 18) were treated with either intravenous saline (control), NMDA receptor antagonist MK801 (1 mg/kg), or CB1 receptor antagonist(More)
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are(More)