Christian Rössert

Learn More
UNLABELLED We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01(More)
Previous theories assumed that the beneficial effect of the potassium channel blocker 4-aminopyridine (4-AP) for patients suffering from downbeat nystagmus (DBN) or episodic ataxia type 2 (EA2) is due to an increase of excitability of cerebellar Purkinje cells (PC). Recent experimental results using therapeutic doses of 4-AP with a mouse model of EA2(More)
Head motion-related sensory signals are transformed by second-order vestibular neurons (2°VNs) into appropriate commands for retinal image stabilization during body motion. In frogs, these 2°VNs form two distinct subpopulations that have either tonic or highly phasic intrinsic properties, essentially compatible with low-pass and bandpass filter(More)
Central vestibular neurons receive substantial inputs from the contralateral labyrinth through inhibitory and excitatory brainstem commissural pathways. The functional organization of these pathways was studied by a multi-methodological approach in isolated frog whole brains. Retrogradely labeled vestibular commissural neurons were primarily located in the(More)
Models of the cerebellar microcircuit often assume that input signals from the mossy-fibers are expanded and recoded to provide a foundation from which the Purkinje cells can synthesize output filters to implement specific input-signal transformations. Details of this process are however unclear. While previous work has shown that recurrent granule cell(More)
The sensory-motor transformation of the large dynamic spectrum of head-motion-related signals occurs in separate vestibulo-ocular pathways. Synaptic responses of tonic and phasic second-order vestibular neurons were recorded in isolated frog brains after stimulation of individual labyrinthine nerve branches with trains of single electrical pulses. The(More)
Citation: Ramaswamy S, Courcol J-D, Abdellah M, Adaszewski SR, Antille N, Arsever S, Atenekeng G, Bilgili A, Brukau Y, Chalimourda A, Chindemi G, Delalondre F, Dumusc R, Eilemann S, Gevaert ME, Gleeson P, Graham JW, Hernando JB, Kanari L, Katkov Y, Keller D, King JG, Ranjan R, Reimann MW, Rössert C, Shi Y, Shillcock JC, Telefont M, Van Geit W, Villafranca(More)
At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions.(More)
Head/body motion-related sensory signals are transformed in second-order vestibular neurons (2°VN) into commands for appropriate motor reactions that stabilize gaze and posture during locomotion. In all vertebrates, these neurons form functional subgroups with different membrane properties and response dynamics, compatible with the necessity to process a(More)
A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how(More)