Learn More
Lichens are symbioses between fungi (mycobionts) and photoautotrophic green algae or cyanobacteria (photobionts). Many lichens occupy large distributional ranges covering several climatic zones. So far, little is known about the large-scale phylogeography of lichen photobionts and their role in shaping the distributional ranges of lichens. We studied south(More)
Population structure and history is poorly known in most lichenized ascomycetes. Many species display large-scale infraspecific disjunctions, which have been explained alternately by range fragmentation in species of high age and widespread long-distance dispersal. Using the lichen Cavernularia hultenii, which is widely disjunct across North America and(More)
Species of the Neuropogon group in the lichen genus Usnea have their centre of distribution in polar regions of the Southern Hemisphere. Their morphological and chemical variability is poorly understood and several asexual taxa with uncertain relationships to fertile taxa occur in the group. The species concept is controversial. A phylogenetic analysis(More)
Lichens, symbiotic associations of fungi (mycobionts) and green algae or cyanobacteria (photobionts), are poikilohydric organisms that are particularly well adapted to withstand adverse environmental conditions. Terrestrial ecosystems of the Antarctic are therefore largely dominated by lichens. The effects of global climate change are especially pronounced(More)
Lichen symbioses were recently shown to include diverse bacterial communities. Although the biogeography of lichen species is fairly well known, the patterns of their bacterial associates are relatively poorly understood. Here we analyse the composition of Alphaproteobacteria in Cetraria aculeata, a common lichen species that occurs at high latitudes and(More)
A molecular clock based on ITS sequence data from the lichen genera Biatora and Phyllopsora is calibrated with the help of paleoclimatic data and evidence of forest history. The clock indicates that diversification within Biatora started as early as in the Late Cretaceous and took place during periods of climatic cooling, when new types of forest evolved(More)
Species delimitations in the predominantly Antarctic and South American group of neuropogonoid species of the lichen-forming fungal genus Usnea are poorly understood. Morphological variability has been interpreted as a result of harsh ecological conditions, but preliminary molecular data have led to doubts about the current species delimitations in these(More)
A 753-771 bp long intronic sequence from the mitochondrial cox 1 gene of Cladonia subcervicornis (Cladoniaceae, Lecanorales, Ascomycota) was amplified with newly designed PCR primers. The cox 1 intron sequence, which apparently has not been used for phylogenetic or population genetic research in fungi, displays high infraspecific variation. Sequences were(More)
Lichens represent an extremely successful symbiosis between fungi and photosynthetic partners. It has been suggested that lichens can enhance their adaptive potential and widen their ecological niches by associating with locally adapted photobionts. Based on a worldwide population sample of the lichen Cetraria aculeata we investigate the genetic diversity(More)