Learn More
We explore the applicability of deep convolutional neural networks (CNNs) for multiple landmark localization in medical image data. Exploiting the idea of regressing heatmaps for individual landmark locations, we investigate several fully convolutional 2D and 3D CNN architectures by training them in an end-to-end manner. We further propose a novel(More)
Biological age (BA) estimation from radiologic data is an important topic in clinical medicine, e.g. in determining endocrinologi-cal diseases or planning paediatric orthopaedic surgeries, while in legal medicine it is employed to approximate chronological age. In this work, we propose the use of deep convolutional neural networks (DCNN) for automatic BA(More)
Automated computer-aided analysis of lung vessels has shown to yield promising results for non-invasive diagnosis of lung diseases. To detect vascular changes which affect pulmonary arteries and veins differently, both compartments need to be identified. We present a novel, fully automatic method that separates arteries and veins in thoracic computed(More)
  • 1