Christian Pansch

Learn More
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg(-1) ) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory(More)
Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We(More)
Temperature and salinity shape the distribution and genetic structure of marine communities. Future warming and freshening will exert an additional stress to coastal marine systems. The extent to which organisms respond to these shifts will, however, be mediated by the tolerances of all life-stages and populations of species and their potential to adapt. We(More)
Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing(More)
  • 1