Christian Nyffenegger

Learn More
This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a(More)
Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM 13/ATCC14580) was examined by using a combinatorial protein(More)
An engineered sialidase, Tr6, from Trypanosoma rangeli was used for biosynthetic production of 3'-sialyllactose, a human milk oligosaccharide case compound, from casein glycomacropeptide (CGMP) and lactose, components abundantly present in industrial dairy side streams. Four different enzyme re-use methods were compared to optimize the biocatalytic(More)
Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T.(More)
Enzymatic conversion of pectinaceous biomasses such as potato and sugar beet pulp at high temperatures is advantageous as it gives rise to lower substrate viscosity, easier mixing, and increased substrate solubility and lowers the risk of contamination. Such high-temperature processing requires development of thermostable enzymes. Talaromyces stipitatus was(More)
Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-d-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N′-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-d-glucosaminide (1 → 4)-β-linkages and are thus “exo-chitobiose hydrolases.” In this study, the chitinase type(More)
Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns.(More)
Microbial phytases catalyze dephosphorylation of phytic acid, thereby potentially releasing chelated iron and improving human iron absorption from cereal-based diets. For this catalysis to take place in vivo, the phytase must be robust to low pH and proteolysis in the gastric ventricle. This study compares the robustness of five different microbial(More)
Human milk oligosaccharides (HMOs) designate a unique family of bioactive lactose-based molecules present in human breast milk. Using lactose as a cheap donor, some β-galactosidases (EC 3.2.1.23) can catalyze transgalactosylation to form the human milk oligosaccharide lacto-N-neotetraose (LNnT; Gal-β(1,4)-GlcNAc-β(1,3)-Gal-β(1,4)-Glc). In order to reduce(More)
A sialidase (EC 3.2.1.18) from the non-pathogenic Trypanosoma rangeli, TrSA, has been shown to exert trans-sialidase activity after mutation of five specific amino acids in the active site (M96V, A98P, S120Y, G249Y, Q284P) to form the so-called TrSA5mut enzyme. By computational and hypothesis driven approaches additional mutations enhancing the(More)
  • 1