Christian N. S. Pedersen

Learn More
This is a progress report describing my research during the last one and a half year, performed during part A of my Ph.D. study. The research field is multi-objective optimization using evolutionary algorithms, and the reseach has taken place in a collaboration with Aarhus Univerity, Grundfos and the Alexandra Institute. My research so far has been focused(More)
RNA molecules are sequences of nucleotides that serve as more than mere intermediaries between DNA and proteins, e.g., as catalytic molecules. Computational prediction of RNA secondary structure is among the few structure prediction problems that can be solved satisfactorily in polynomial time. Most work has been done to predict structures that do not(More)
The basic theory of hidden Markov models was developed and applied to problems in speech recognition in the late 1960s, and has since then been applied to numerous problems, e.g. biological sequence analysis. Most applications of hidden Markov models are based on efficient algorithms for computing the probability of generating a given string, or computing(More)
Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k(More)
Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella(More)
Hidden Markov models were introduced in the beginning of the 1970's as a tool in speech recognition. During the last decade they have been found useful in addressing problems in computational biology such as characterising sequence families, gene finding, structure prediction and phylogenetic analysis. In this paper we propose several measures between(More)
Coalescent simulations are playing a large role in interpreting large scale intra-specific sequence or polymorphism surveys and for planning and evaluating association studies. Coalescent simulations of data sets under different models can be compared to the actual data to test the importance of different evolutionary factors and thus get insight into(More)