Christian Mitter

Learn More
Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological(More)
Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity.(More)
Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking. In the present study, diffusion tensor imaging (DTI) and(More)
The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics.(More)
Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in(More)
  • 1