Christian Melander

Learn More
The host factor LSF represses the human immunodeficiency virus type 1 long terminal repeat (LTR) by mediating recruitment of histone deacetylase. We show that pyrrole-imidazole polyamides targeted to the LTR can specifically block LSF binding both in vitro and within cells via direct access to chromatin, resulting in increased LTR expression.
2-aminoimidazoles are an emerging class of small molecules that possess the ability to inhibit and disperse biofilms across bacterial order, class, and phylum. Herein, we report the synergistic effect between a 2-aminoimidazole/triazole conjugate and antibiotics toward dispersing preestablished biofilms, culminating with a 3-orders-of-magnitude increase of(More)
Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping,(More)
When targeted to sequences adjacent to a TATA element, pyrrole-imidazole (Py-Im) polyamides inhibit the DNA binding activity of TATA box binding protein (TBP) and basal transcription by RNA polymerase II. In the present study, we scanned the human immunodeficiency virus type 1 promoter for polyamide inhibition of TBP binding and transcription using a series(More)
A chemically diverse library of TAGE-triazole conjugates was synthesized utilizing click chemistry on the TAGE scaffold. This library of small molecules was screened for anti-biofilm activity and found to possess the ability of inhibiting biofilm formation against Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. One such compound(More)
Bacterial biofilms are defined as a community of surface-attached bacteria that are protected by an extracellular matrix of biomolecules. We have recently reported the synthesis of a small molecule, denoted TAGE, based on the natural product bromoageliferin and demonstrated that TAGE has anti-biofilm activity against Pseudomonas aeruginosa. Herein we(More)
An 88 member library based upon the marine bacterial metabolite ethyl N-(2-phenethyl) carbamate was evaluated for bacterial biofilm inhibition against a panel of medically relevant strains. These studies culminated in the discovery of a new class of molecules capable of inhibiting the formation of S. aureus biofilms with low micromolar IC(50) values.
Aquatic microbes produce diverse secondary metabolites with interesting biological activities. Cytotoxic metabolites have the potential to become lead compounds or drugs for cancer treatment. Many cytotoxic compounds, however, show undesirable toxicity at higher concentrations. Such undesirable activity may be reduced or eliminated by using lower doses of(More)