Learn More
The crystallographically determined structure of a soluble fragment from the major envelope protein of a flavivirus reveals an unusual architecture. The flat, elongated dimer extends in a direction that would be parallel to the viral membrane. Residues that influence binding of monoclonal antibodies lie on the outward-facing surface of the protein. The(More)
A quantitative study was performed to investigate the requirements for secretion of recombinant soluble and particulate forms of the envelope glycoprotein E of tick-borne encephalitis (TBE) virus. Full-length E and a carboxy terminally truncated anchor-free form were expressed in COS cells in the presence and absence of prM, the precursor of the viral(More)
Envelope protein E of the flavivirus tick-borne encephalitis virus mediates membrane fusion, and the structure of the N-terminal 80% of this 496-amino-acid-long protein has been shown to differ significantly from that of other viral fusion proteins. The structure of the carboxy-terminal 20%, the stem-anchor region, is not known. It contains sequences that(More)
The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change(More)
Propagation of the flavivirus tick-borne encephalitis virus in BHK-21 cells selected for mutations within the large surface glycoprotein E that increased the net positive charge of the protein. In the course of 16 independent experiments, 12 different protein E mutation patterns were identified. These were located in all three of the structural domains and(More)
The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain(More)
Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage(More)
Recombinant subviral particles (RSPs) obtained by coexpression of the envelope (E) and premembrane (prM) proteins of tick-borne encephalitis virus in COS cells (S. L. Allison, K. Stadler, C. W. Mandl, C. Kunz, and F. X. Heinz, J. Virol. 69:5816-5820, 1995) were extensively characterized and shown to be ordered structures containing envelope glycoproteins(More)
The polymerase chain reaction (PCR) was used to detect varicella-zoster virus (VZV) DNA in the cerebrospinal fluid of patients with VZV infection associated with neurological symptoms. Positive results were obtained in three of five children with post-chicken pox cerebellitis and in seven of seven herpes zoster patients with neurological symptoms. The PCR(More)