Learn More
Random Forests (RFs) are frequently used in many computer vision and machine learning applications. Their popularity is mainly driven by their high computational efficiency during both training and evaluation while achieving state-of-the-art results. However, in most applications RFs are used off-line. This limits their usability for many practical(More)
Object detectors are typically trained on a large set of still images annotated by bounding-boxes. This paper introduces an approach for learning object detectors from real-world web videos known only to contain objects of a target class. We propose a fully automatic pipeline that localizes objects in a set of videos of the class and learns a detector for(More)
Tracking-by-detection is increasingly popular in order to tackle the visual tracking problem. Existing adaptive methods suffer from the drifting problem, since they rely on self-updates of an on-line learning method. In contrast to previous work that tackled this problem by employing semi-supervised or multiple-instance learning, we show that augmenting an(More)
Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of the tracker may introduce an error which, finally, can(More)
The aim of single image super-resolution is to reconstruct a high-resolution image from a single low-resolution input. Although the task is ill-posed it can be seen as finding a non-linear mapping from a low to high-dimensional space. Recent methods that rely on both neighborhood embedding and sparse-coding have led to tremendous quality improvements. Yet,(More)
Online boosting is one of the most successful online learning algorithms in computer vision. While many challenging online learning problems are inherently multi-class, online boosting and its variants are only able to solve binary tasks. In this paper, we present Online Multi-Class LPBoost (OMCLP) which is directly applicable to multi-class problems. From(More)
Multiple-instance learning (MIL) allows for training classi-fiers from ambiguously labeled data. In computer vision, this learning paradigm has been recently used in many applications such as object classification , detection and tracking. This paper presents a novel multiple-instance learning algorithm for randomized trees called MIForests. Ran-domized(More)
Random Forests (RFs) have become commonplace in many computer vision applications. Their popularity is mainly driven by their high computational efficiency during both training and evaluation while still being able to achieve state-of-the-art accuracy. This work extends the usage of Random Forests to Semi-Supervised Learning (SSL) problems. We show that(More)
A recent dominating trend in tracking called tracking-by-detection uses on-line classifiers in order to redetect objects over succeeding frames. Although these methods usually deliver excellent results and run in real-time they also tend to drift in case of wrong updates during the self-learning process. Recent approaches tackled this problem by formulating(More)
This paper introduces a novel classification method termed Alternating Decision Forests (ADFs), which formulates the training of Random Forests explicitly as a global loss minimization problem. During training, the losses are minimized via keeping an adaptive weight distribution over the training samples, similar to Boosting methods. In order to keep the(More)