Christian L. Ried

  • Citations Per Year
Learn More
ABSTRACT Tn5-induced mutations in Agrobacterium vitis F2/5 resulted in both altered grape necrosis and tobacco leaf panel collapse phenotypes, suggesting that the underlying mechanisms of the reactions are related. The reaction on tobacco resembles the classical hypersensitive response (HR) caused by several plant pathogenic bacteria in that it is(More)
MOTIVATION Most integral membrane proteins form dimeric or oligomeric complexes. Oligomerization is frequently supported by the non-covalent interaction of transmembrane helices. It is currently not clear how many high-affinity transmembrane domains (TMD) exist in a proteome and how specific their interactions are with respect to preferred contacting faces(More)
Formation of non-covalent functional complexes of integral membrane proteins is frequently supported by sequence-specific interaction of their transmembrane helices. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes. We find that almost half of the human single-span membrane proteins contain a transmembrane helix that(More)
Little is known about how a membrane can regulate interactions between transmembrane helices. Here, we show that strong self-interaction of the transmembrane helix of human quiescin sulfhydryl oxidase 2 rests on a motif of conserved amino acids comprising one face of the helix. Atomistic molecular dynamics simulations suggest that water molecules enter the(More)
  • 1