Christian Klose

Learn More
Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of(More)
This research study explores the combined use of more than one parameter derived from optical tomographic images to increase diagnostic accuracy which is measured in terms of sensitivity and specificity. Parameters considered include, for example, smallest or largest absorption or scattering coefficients or the ratios thereof in an image region of interest.(More)
A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous(More)
Blood plasma has gained protagonism in lipidomics studies due to its availability, uncomplicated collection and preparation, and informative readout of physiological status. At the same time, it is also technically challenging to analyze due to its complex lipid composition affected by many factors, which can hamper the throughput and/or lipidomics(More)
Acute metabolic changes in plasma membrane (PM) lipids, such as those mediating signalling reactions, are rapidly compensated by homeostatic responses whose molecular basis is poorly understood. Here we show that the extended synaptotagmins (E-Syts), endoplasmic reticulum (ER) proteins that function as PtdIns(4,5)P2- and Ca(2+)-regulated tethers to the PM,(More)
Shotgun lipidomics is the comprehensive and quantitative analysis of the lipid composition of biological and clinical samples. Here we describe the application and performance of the Lipotype shotgun lipidomics technology in clinical high throughput screening projects for the identification of disease-specific lipid patterns as well as in organ-wide(More)
In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is(More)
This paper presents a method for the magnetic data storage on the surface of gentelligent components. One key issue is the possibility to store customers' data on components dynamically and to read it out later on. The data storage is carried out magnetically and is demonstrated on a high-speed milling head. As such components are mostly made of light(More)
  • 1