Learn More
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g.,(More)
Several methodologies were tested to supply nutrients to a downflow biofilter packed with perlite and used to treat toluene-polluted air. Despite the presence of an inorganic carrier, elimination capacities of up to around 60 g/m(3) per hour could be maintained when a basal medium, containing nitrogen, phosphorus and potassium, was supplied once every(More)
BACKGROUND: Biofilters are efficient systems for treating malodorous emissions. The mechanism involved during pollutant transfer and subsequent biotransformation within a biofilm is a complex process. The use of artificial neural networks to model the performance of biofilters using easily measurable state variables appears to be an effective alternative to(More)
The fermentation of waste gases rich in carbon monoxide using acetogens is an efficient way to obtain valuable biofuels like ethanol and butanol. Different experiments were carried out with the bacterial species Clostridium carboxidivorans as biocatalyst. In batch assays with no pH regulation, after complete substrate exhaustion, acetic acid, butyric acid,(More)
After 6 months of operation a long-term biofilter was stopped for two weeks and then it was started up again for a second experimental period of almost 1.3 years, with high toluene loads and submitted to several physical and chemical treatments in order to remove excess biomass that could affect the reactor's performance due to clogging, whose main effect(More)
The removal of mixtures of gas-phase pollutants released from formaldehyde- and formaldehyde resin-producing industries was studied in different bioreactor systems. The waste gases contained formaldehyde, methanol, dimethylether and carbon monoxide. The use of a hybrid two-stage bioreactor, composed of a biotrickling filter and a conventional biofilter(More)
Manufacturing processes in fish canning industries generate a considerable amount of solid waste that can be digested anaerobically. The aim of this research was to study the biochemical methane potential of different solid fish waste. For tuna, sardine and needle fish waste, around 0.47g COD-CH(4)/g COD(added) was obtained in batch experiments with 1%TS;(More)
Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents(More)
Due to their inherent robustness, artificial neural network models have proven to be successful and have been used extensively in biological wastewater treatment applications. However, only recently, with the scientific advancements made in biological waste gas treatment systems, the application of neural networks have slowly gained the practical momentum(More)