Learn More
Although rabbits are commonly used as tendon repair model, interpretative tools are divergent and comprehensive scoring systems are lacking. Hence, the aim was to develop a multifaceted scoring system to characterize healing in a partial Achilles tendon defect model. A 3 mm diameter defect was created in the midsubstance of the medial M. gastrocnemius(More)
The potential of mesenchymal stem and progenitor cells (MSC) to replicate undifferentiated and to mature into distinct mesenchymal tissues suggests these cells as an attractive source for tissue engineering. The objective was to establish a protocol for the isolation of porcine MSC from bone marrow and to demonstrate their ex vivo differentiation into(More)
Tenocyte transplantation may prove to be an approach to support healing of tendon defects. Cell-cell and cell-matrix contacts within three-dimensional (3D) cultures may prevent tenocyte dedifferentiation observed in monolayer (2D) culture. The present study compares both neotissue formation and tenocyte extracellular matrix (ECM) expression in 2D and 3D(More)
INTRODUCTION Second-generation autologous chondrocyte implantation with scaffolds stabilizing the grafts is a clinically effective procedure for cartilage repair. In this ongoing prospective observational case report study, we evaluated the effectiveness of BioSeed-C, a cell-based cartilage graft based on autologous chondrocytes embedded in fibrin and a(More)
Autologous chondrocyte implantation (ACI) is an effective clinical procedure for the regeneration of articular cartilage defects. BioSeed-C is a second-generation ACI tissue engineering cartilage graft that is based on autologous chondrocytes embedded in a three-dimensional bioresorbable two-component gel-polymer scaffold. In the present prospective study,(More)
In cartilage repair, platelet-rich plasma (PRP) is used in one-step approaches utilizing microfracture and matrix-induced chondrogenesis procedures, bone marrow-derived cell transplantation, or intra-articular injection. The aim of our study was to evaluate the effect of human PRP on the migration and chondrogenic differentiation of human subchondral(More)
INTRODUCTION Mesenchymal stem cells (MSC) are highly attractive for use in cartilage regeneration. To date, MSC are usually recruited from subchondral bone marrow using microfracture. Recent data suggest that isolated cells from adult human articular cartilage, which express the combination of the cell-surface markers CD105 and CD166, are multi-potent(More)
The objective of our study was to evaluate the integration of autologous cartilage tissue engineering transplants based on resorbable polyglactin/polydioxanone scaffolds into full-thickness cartilage defects of horses. Cartilage biopsies were taken from the non-load-bearing area of the lateral talus of the left tibiotarsal joint of eight healthy Haflinger(More)
The high-density micromass culture has been widely applied to study chondrocyte cell physiology and pathophysiological mechanisms. Since an integrated image has not been established so far, we analyzed the phenotypic alterations of human articular chondrocytes in this model on the broad molecular level. Freshly isolated chondrocytes were assembled as(More)
A variety of chemokines has been shown to recruit human bone marrow-derived mesenchymal stem cells (MSC) and may be potential candidates for chemokine-based tissue regeneration approaches. The aim of our study was to determine whether the chemokine CXCL7 stimulates migration of human bone marrow-derived MSC and to analyze the effect of CXCL7 on the(More)