Christian Kaps

Learn More
INTRODUCTION Mesenchymal stem cells (MSC) are highly attractive for use in cartilage regeneration. To date, MSC are usually recruited from subchondral bone marrow using microfracture. Recent data suggest that isolated cells from adult human articular cartilage, which express the combination of the cell-surface markers CD105 and CD166, are multi-potent(More)
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the(More)
The potential of mesenchymal stem and progenitor cells (MSC) to replicate undifferentiated and to mature into distinct mesenchymal tissues suggests these cells as an attractive source for tissue engineering. The objective was to establish a protocol for the isolation of porcine MSC from bone marrow and to demonstrate their ex vivo differentiation into(More)
Autologous chondrocyte implantation (ACI) is an effective clinical procedure for the regeneration of articular cartilage defects. BioSeed-C is a second-generation ACI tissue engineering cartilage graft that is based on autologous chondrocytes embedded in a three-dimensional bioresorbable two-component gel-polymer scaffold. In the present prospective study,(More)
Although rabbits are commonly used as tendon repair model, interpretative tools are divergent and comprehensive scoring systems are lacking. Hence, the aim was to develop a multifaceted scoring system to characterize healing in a partial Achilles tendon defect model. A 3 mm diameter defect was created in the midsubstance of the medial M. gastrocnemius(More)
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the(More)
INTRODUCTION Second-generation autologous chondrocyte implantation with scaffolds stabilizing the grafts is a clinically effective procedure for cartilage repair. In this ongoing prospective observational case report study, we evaluated the effectiveness of BioSeed-C, a cell-based cartilage graft based on autologous chondrocytes embedded in fibrin and a(More)
OBJECTIVE An important role in joint and cartilage homeostasis in adults has been demonstrated recently for morphogenetic factors of the transforming growth factor beta family. Therefore, this study was undertaken to investigate the potential of bone morphogenetic proteins (BMPs) in chondrocyte differentiation using current technologies of tissue(More)
OBJECTIVE The microfracture technique activates mesenchymal progenitors that enter the cartilage defect and form cartilage repair tissue. Synovial fluid (SF) has been shown to stimulate the migration of subchondral progenitors. The aim of our study was to determine the chemokine profile of SF from normal, rheumatoid arthritis (RA) and osteoarthritis (OA)(More)
The high-density micromass culture has been widely applied to study chondrocyte cell physiology and pathophysiological mechanisms. Since an integrated image has not been established so far, we analyzed the phenotypic alterations of human articular chondrocytes in this model on the broad molecular level. Freshly isolated chondrocytes were assembled as(More)