Learn More
The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the(More)
We studied the structure of the aragonite platelets of Haliotis laevigata nacre, using conventional transmission electron microscopy, Z-contrast, electron tomography, energy-dispersive X-ray analysis and electron energy-loss spectroscopy. We observed faceted voids several nanometers wide within the aragonite platelets. The electron tomography investigations(More)
In this work, we studied the correlation of the orientation of stacked aragonite platelets of Haliotis laevigata nacre, using selected area diffraction (SAD) in transmission electron microscopy (TEM). From the position of the center of Laue circle (COLC) within the diffraction patterns the tilt angles of the investigated platelets relatively to a reference(More)
Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective(More)
The localization of scarce antigens in thin sections of biological material can be accomplished by pre-embedment labeling with ultrasmall immuno-gold labels. Moreover, with this method, labeling is not restricted to the section surface but occurs throughout the section volume. Thus, when combined with electron tomography, antigens can be localized in three(More)
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In(More)
We present highly efficient electroluminescent devices using size-separated silicon nanocrystals (ncSi) as light emitting material. The emission color can be tuned from the deep red down to the yellow-orange spectral region by using very monodisperse size-separated nanoparticles. High external quantum efficiencies up to 1.1% as well as low turn-on voltages(More)
A mild pyrolytic method is proposed for the generation of different carbon micro- and nanoparticles that are either unprecedented or have never been reported under the present experimental conditions. A hexa-alkyl-substituted hexa-peri-hexabenzocoronene serves as a graphite-like starting compound that melts into a discotic liquid crystalline phase prior to(More)
Size-selective precipitation was used to successfully separate colloidally stable allylbenzene-capped silicon nanocrystals into several visible emitting monodisperse fractions traversing the quantum size effect range of 1-5 nm. This enabled the measurement of the absolute quantum yield and lifetime of photoluminescence of allylbenzene-capped silicon(More)
We report the preparation of monodisperse silicon nanocrystals (ncSi) by size-separation of polydisperse alkyl-capped ncSi using organic density gradient ultracentrifugation. The ncSi were synthesized by thermal processing of trichlorosilane-derived sol-gel glasses followed by HF etching and surface passivation with alkyl chains and were subsequently(More)