Christian Jesús B. Fayomi

Learn More
This paper deals with design and characterization techniques of a low-voltage CMOS analog switch to be used in sample-data circuits. Hspice simulation-based simple design procedure and a characterization method are presented. The switch onresistance, the error voltage caused by charge injection and clock feedthrough as well as non-linear distortion(More)
This paper concerns the design, implementation and subsequent experimental validation of a low-voltage analog CMOS switch based on a gate-bootstrapped method. The main part of the proposed circuit is a new low-voltage and low-stress CMOS clock voltage doubler. Through the use of a dummy switch, the charge injection induced by the bootstrapped switch is(More)
This paper presents an analog design methodology, using the selection of inversion coefficient of MOS devices, to design low voltage and low-power (LVLP) CMOS voltage references. These circuits often work under subthreshold operation. Hence, there is a demand for analog design methods that optimize the sizing process of transistors working in weak and(More)
We present in this paper an overview of circuit techniques dedicated to design reliable low-voltage (1-V and below) analog functions in deep submicron standard CMOS processes. The challenges of designing such low-voltage and reliable analog building blocks are addressed both at circuit and physical layout levels. State-ofthe-art circuit topologies and(More)
This paper presents the design and characterization of a sample-and-hold circuit based on a novel implementation of the bootstrapped low-voltage analog CMOS switch. The heart of this circuit is a new low-voltage and low-stress CMOS clock voltage doubler. Through the use of a dummy switch, the charge injection induced by the bootstrapped switch is greatly(More)
In this paper, we describe a novel low-voltage class-AB operational amplifier (opamp) based on dynamic threshold voltage MOS transistors (DTMOS). A DTMOS transistor is a device whose gate is tied to its bulk. DTMOS transistor pseudo-pMOS differential input pairs are used for input common-mode range enhancement, followed by a single ended class-AB output.(More)