Christian Hubicki

Learn More
ATRIAS is a human-scale 3D-capable bipedal robot designed to mechanically embody the spring-mass model for dynamic walking and running. To help bring the extensive work on this theoretical model further into practice, we present the design and validation of a spring-mass robot which can operate in real-world settings (i.e., off-tether and without(More)
— Hybrid zero dynamics (HZD) has emerged as a popular framework for the stable control of bipedal robotic gaits, but typically designing a gait's virtual constraints is a slow and undependable optimization process. To expedite and boost the reliability of HZD gait generation, we borrow methods from trajectory optimization to formulate a smoother and more(More)
— We investigate the task-optimality of legged limit cycles and present numerical evidence supporting a simple general locomotion-planning template. Limit cycles have been foundational to the control and analysis of legged systems, but as robots move toward completing real-world tasks, are limit cycles practical in the long run? We address this question(More)
— Legged robots enjoy kilohertz control rates but are still making incremental gains towards becoming as nimble as animals. In contrast, bipedal animals are amazingly robust runners despite lagged state feedback from protracted neuromechanical delays. Based on evidence from biological experiments, we posit that much of disturbance rejection can be offloaded(More)
We propose a method for synthesizing optimal controllers for analytically and computationally intractable dynamic systems. It is difficult to create controllers for legged systems for two primary reasons: a lack of closed-form solution (analytically intractable) and high dimensionality (computationally intractable). For example, there is no closed-form(More)
  • 1