Learn More
Here, we provide the first evidence for functional expression of a human olfactory receptor protein (OR17-40) and show that recombinant olfactory receptors can be functionally expressed in heterologous systems. A mixture of 100 different odorants (Henkel 100) elicited a transient increase in intracellular [Ca(2+)] in human embryonic kidney 293 (HEK293)(More)
Members of the superfamily of transient receptor potential (TRP) channels are proposed to play important roles in sensory physiology. As an excitatory ion channel TRPA1 is robustly activated by pungent irritants in mustard and garlic and is suggested to mediate the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate(More)
Although it has been known for some time that olfactory receptors (ORs) reside in spermatozoa, the function of these ORs is unknown. Here, we identified, cloned, and functionally expressed a previously undescribed human testicular OR, hOR17-4. With the use of ratiofluorometric imaging, Ca2+ signals were induced by a small subset of applied chemical stimuli,(More)
A systematic analysis of the Drosophila genome data reveals the existence of pHCl, a novel member of ligand-gated ion channel subunits. pHCl shows nearly identical similarity to glutamate-, glycine-, and histamine-gated ion channels, does however not belong to any of these ion channel types. We identified three different sites, where splicing generates(More)
Steroid hormone action involves binding to cognate intracellular receptors that, in turn, bind to respective response elements and thus modulate gene expression. The present study shows that the gonadal steroids, 17beta-estradiol and progesterone, may also act as functional antagonists at the 5-hydroxytryptamine type 3 (5-HT3) receptor in whole-cell(More)
Odorant receptors (ORs) constitute the molecular basis for the detection of volatile odorous molecules and the perception of smell. Our understanding of chemical senses has been greatly expanded by the discovery of the OR gene families in vertebrates and in the nematode Caenorhabditis elegans. Recently, candidate Drosophila OR genes have been identified.(More)
Phosphatidylinositol 3-kinase (PI3K)-dependent phosphoinositide signaling has been implicated in diverse cellular systems coupled to receptors for many different ligands, but the extent to which it functions in sensory transduction is yet to be determined. We now report that blocking PI3K activity increases odorant-evoked, cyclic nucleotide-dependent(More)
Sensory neurons of the vomeronasal organ (VNO) detect volatile chemicals that are released by conspecific animals and convey information about social and reproductive behavior. The signal transduction pathway in vomeronasal receptor neurons (VRNs) is not known in detail, but is believed to be distinct from that of the sensory neurons of the main olfactory(More)
gamma-Aminobutyric acid type A (GABAA) receptor subtypes containing the alpha6-subunit are generally thought to be insensitive to the action of benzodiazepine agonists. We describe the specific binding of the benzodiazepine agonist flunitrazepam to alpha6beta2gamma2-containing GABAA receptors, which has not been observed before and differs from previous(More)
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains(More)