Learn More
An E1B 55 kDa gene-deleted adenovirus, Onyx-015, which reportedly selectively replicates in and lyses p53-deficient cells, was administered by a single intratumoral injection to a total of 22 patients with recurrent head and neck cancer. The objectives of this Phase I study were to determine the safety, feasibility, and efficacy of this therapy and(More)
The human adenovirus E1B gene encodes a 55-kilodalton protein that inactivates the cellular tumor suppressor protein p53. Here it is shown that a mutant adenovirus that does not express this viral protein can replicate in and lyse p53-deficient human tumor cells but not cells with functional p53. Ectopic expression of the 55-kilodalton EIB protein in the(More)
Replication-selective oncolytic viruses constitute a rapidly evolving and new treatment platform for cancer. Gene-deleted viruses have been engineered for tumor selectivity, but these gene deletions also reduce the anti-cancer potency of the viruses. We have identified an E1A mutant adenovirus, dl922-947, that replicates in and lyses a broad range of cancer(More)
The E1B-deleted, replication-competent ONYX-015 (dl1520) adenovirus was originally described as being able to selectively kill p53-deficient cells due to a requirement of p53 inactivation for efficient viral replication. This hypothesis has become controversial because subsequent in vitro studies have demonstrated that the host range specificity of ONYX-015(More)
The DNA-array to protein-array technology (DAPA) allows the direct transcription and translation of a coded DNA-array to a protein array in the presence of a cell free expression system. The coupling efficiency of DNA and of the corresponding immobilized proteins is enhanced by using 3-dimensional epoxy surfaces. The production time of protein arrays is(More)
  • 1