Christian Heinz

Learn More
MspA forms water-filled channels in the mycolic acid layer of Mycobacterium smegmatis thereby allowing the diffusion of hydrophilic solutes through this permeability barrier into the periplasm. MspA is the first member of a new family of porins and is extremely stable against chemical and thermal denaturation. We developed a purification procedure based on(More)
Porins form channels in the mycolic acid layer of mycobacteria and thereby control access of hydrophilic molecules to the cell. We purified a 100 kDa protein from Mycobacterium smegmatis and demonstrated its channel-forming activity by reconstitution in planar lipid bilayers. The mspA gene encodes a mature protein of 184 amino acids and an N-terminal signal(More)
Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be(More)
Mycobacteria protect themselves with an outer lipid bilayer, which is the thickest biological membrane hitherto known and has an exceptionally low permeability rendering mycobacteria intrinsically resistant against many antibiotics. Pore proteins mediate the diffusion of hydrophilic nutrients across this membrane. Electron microscopy revealed that the outer(More)
Chlamydiae are obligate intracellular bacteria, comprising some of the most important bacterial pathogens of animals and humans. During their unique developmental cycle they have to attach to and enter their eukaryotic host cells, a process mediated by proteins in the chlamydial outer membrane. So far the only experimental data for chlamydial outer membrane(More)
MspA is the major porin of Mycobacterium smegmatis mediating the exchange of hydrophilic solutes across the cell wall and is the prototype of a new family of tetrameric porins with a single central pore of 10 nm in length. Infrared and circular dichroism spectroscopy revealed that MspA consists mainly of antiparallel beta-strands organized in a coherent(More)
MspA is the prototype of a new family of tetrameric porins and provides the main general diffusion pathway for hydrophilic compounds through the outer membrane of Mycobacterium smegmatis. Structural analysis was hampered by the scarce amount of pure protein. After replacement of the GC-rich codons of the mspA gene by codons optimal for high-level expression(More)
Chlamydiae belong to the most successful intracellular bacterial pathogens. They display a complex developmental cycle and an extremely broad host spectrum ranging from vertebrates to protozoa. The family Chlamydiaceae comprises exclusively well-known pathogens of humans and animals, whereas the members of its sister group, the Parachlamydiaceae, naturally(More)
The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major(More)