Christian Hauer

Learn More
Nonsense-mediated RNA decay (NMD) is an RNA-based quality control mechanism that eliminates transcripts bearing premature translation termination codons (PTC). Approximately, one-third of all inherited disorders and some forms of cancer are caused by nonsense or frame shift mutations that introduce PTCs, and NMD can modulate the clinical phenotype of these(More)
Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of(More)
Individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) allows the determination of crosslinking sites of RNA-binding proteins (RBPs) on RNAs. iCLIP is based on ultraviolet light crosslinking of RBPs to RNA, reverse transcription and high-throughput sequencing of fragments terminating at the site of crosslinking. As a result, start(More)
Nonsense-mediated mRNA decay (NMD) has originally been described as a surveillance mechanism to inhibit the expression of mRNAs with truncated open reading frames (ORFs) and to contribute to the fidelity of gene expression. It is now recognized that NMD also controls the expression of physiological genes with "intact" mRNA. Stress can decrease NMD(More)
Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with(More)
Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study(More)
The exon junction complex (EJC) connects spliced mRNAs to posttranscriptional processes including RNA localization, transport, and regulated degradation. Here, we provide a comprehensive analysis of bona fide EJC binding sites across the transcriptome including all four RNA binding EJC components eIF4A3, BTZ, UPF3B, and RNPS1. Integration of these data sets(More)
  • 1