Learn More
We perform a simple sensitivity analysis of a W1 waveguide bend in a photonic crystal (PhC) where we use the information obtained to optimize the PhC bend's frequency response. Within a single optimization step we already achieve very low power reflection coefficients over almost the entire frequency range of the photonic bandgap (PBG), i.e., an achromatic(More)
Biosensing with nanoholes is one of the most promising applications of nanoplasmonic devices. The sensor properties, however, are complex due to coupled resonances through propagating and localized surface plasmons. This Full Paper demonstrates experimental and simulation studies on different plasmonic hole systems, namely various patterns of circular holes(More)
We studied the influence of nanosteps on signal intensity in gap-mode tip-enhanced Raman spectroscopy (TERS). A benzenethiol monolayer adsorbed on an Au substrate was investigated. The correlation between the TERS signal and the local topography on the substrate shows that a 2 nm high sharp step on the Au surface can significantly increase the enhancement.(More)
The optical signal of a localized surface plasmon resonance (LSPR)-based sensor combined with electrochemistry was investigated. Gold nanoparticles were immobilized on an indium tin oxide (ITO) substrate, which functioned as working electrode. Using cyclic voltammetry synchronized with LSPR sensing, surface reactions on gold were detected both electrically(More)
Single binding events of nanoparticle-labeled DNA strands were detected as stepwise peak shifts in localized surface plasmon resonance by single particle measurement. We confirmed the number of binding events by observing label particles by scanning electron microscopy. Our simulation based on a multiple multipole program showed that the peak shift is(More)
Highly accurate computations of surface plasmons in metallic nanostructures with various geometries are presented. Calculations for cylinders with irregular cross section, coupled structures, and periodic gratings are shown. These systems exhibit a resonant behavior with complex field distribution and strong field enhancement, and therefore their(More)
We report on the numerical structural optimization of two-dimensional photonic crystal (PhC) power dividers by using two different classes of optimization algorithms, namely, a modified truncated Newton (TN) gradient search as deterministic local optimization scheme and an evolutionary optimization representing the probabilistic global search strategies.(More)
We propose a new configuration for a fully metal coated scanning near field (SNOM) probe based on asymmetric corrugations in the metal coating. The variation in the metal surface induces coupling mechanisms leading to the creation of a localized hot spot under linearly polarized excitation. Field localization is an effect of paramount importance for(More)
We investigate the optical forces acting on a metallic nanoparticle when the nanoparticle is introduced within a photonic nanojet (PNJ). Optical forces at resonance and off-resonance conditions of the microcylinder or nanoparticle are investigated. Under proper polarization conditions, the whispering gallery mode can be excited in the microcylinder, even at(More)