Learn More
Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be(More)
OBJECTIVES X-ray computed tomography (CT) using phase contrast can provide images with greatly enhanced soft-tissue contrast in comparison to conventional attenuation-based CT. We report on the first scan of a human specimen recorded with a phase-contrast CT system based on an x-ray grating interferometer and a conventional x-ray tube source. Feasibility(More)
Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage.(More)
We report how a grating interferometer yields neutron dark-field scatter images for tomographic investigations. The image contrast is based on ultrasmall-angle scattering. It provides otherwise inaccessible spatially resolved information about the distribution of micrometer and submicrometer sized structural formations. Three complementary sets of(More)
We report how a setup consisting of three gratings yields quantitative two- and three-dimensional images depicting the quantum-mechanical phase shifts of neutron de Broglie wave packets induced by the influence of macroscopic objects. Since our approach requires only a little spatial and chromatic coherence it provides a more than 2 orders of magnitude(More)
We have developed a neutron phase contrast imaging method based on a grating interferometer setup. The principal constituents are two absorption gratings made of gadolinium and a phase modulating grating made of silicon. The design parameters of the setup, such as periodicity, structure heights of the gratings, and the distances between the gratings, are(More)
Here we introduce a novel neutron imaging method, which is based on the effect that the spatial coherence of the neutron wave front can be changed through small-angle scattering of neutrons at magnetic domain walls in the specimen. We show that the technique can be used to visualize internal bulk magnetic domain structures that are difficult to access by(More)
We report on the fabrication and application of a novel neutron imaging test device made of gadolinium. It is designed for a real time evaluation of the spatial resolution, resolution direction, and distortions of a neutron imaging detector system. Measurements of the spatial resolution of (6)LiF doped ZnS scintillator screens with different thicknesses and(More)
In x-ray radiography, particularly for technical and industrial applications, a scanning setup is very often favorable when compared to a direct two-dimensional image acquisition. Here, we report on an efficient scanning method for grating based x-ray phase contrast imaging with tube based sources. It uses multiple line detectors for staggered acquisition(More)
Alike materials in the solid state, the phase diagram of type-II superconductors exhibit crystalline, amorphous, liquid and spatially inhomogeneous phases. The multitude of different phases of vortex matter has thence proven to act as almost ideal model system for the study of both the underlying properties of superconductivity but also of general phenomena(More)