Christian Gießen

Learn More
We consider stochastic versions of OneMax and LeadingOnes and analyze the performance of evolutionary algorithms with and without populations on these problems. It is known that the (1+1) EA on OneMax performs well in the presence of very small noise, but poorly for higher noise levels. We extend these results to LeadingOnes and to many different noise(More)
The ( $$1+\lambda $$ 1 + λ ) EA with mutation probability c / n, where $$c>0$$ c > 0 is an arbitrary constant, is studied for the classical OneMax function. Its expected optimization time is analyzed exactly (up to lower order terms) as a function of c and $$\lambda $$ λ . It turns out that 1 / n is the only optimal mutation probability if $$\lambda =o(\ln(More)
  • 1