Christian Genest

Learn More
Deheuvels (1981a) described a decomposition of the empirical copula process into a finite number of asymptotically mutually independent sub-processes whose joint limiting distribution is tractable under the hypothesis that a multivariate distribution is equal to the product of its margins. It is proved here that this result can be extended to the serial(More)
This paper presents an introduction to inference for copula models, based on rank methods. By working out in detail a small, fictitious numerical example, the writers exhibit the various steps involved in investigating the dependence between two random variables and in modeling it using copulas. Simple graphical tools and numerical techniques are presented(More)
The tail behavior of sums of dependent risks was considered by Wüthrich (2003) and by Alink et al. (2004, 2005) in the case where the variables are exchangeable and connected through an Archimedean copula model. It is shown here how their result can be extended to a broader class of dependence structures using multivariate extreme-value theory. An explicit(More)
Any multivariate density can be decomposed through successive conditionings into basic building blocks involving only pairs of variables. The various ways in which this can be done are called regular vines; C-vines and D-vines are prime examples of such structures. A pair-copula construction (PCC) is a modelling strategy in which conditional and(More)
Deheuvels [J. Multivariate Anal. 11 (1981) 102–113] and Genest and Rémillard [Test 13 (2004) 335–369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cramér–von Mises statistics derived from a Möbius decomposition of the empirical copula process. A result on the large-sample(More)