Learn More
Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our(More)
We compare different centrality metrics which aim at an identification of important nodes in complex networks. We investigate weighted functional brain networks derived from multichannel electroencephalograms recorded from 23 healthy subject under resting-state eyes-open or eyes-closed conditions. Although we observe the metrics strength, closeness, and(More)
We investigate the long-term evolution of degree-degree correlations (assortativity) in functional brain networks from epilepsy patients. Functional networks are derived from continuous multi-day, multi-channel electroencephalographic data, which capture a wide range of physiological and pathophysiological activities. In contrast to previous studies which(More)
  • 1