Learn More
—Quadrupedal animals move through their environments with unmatched agility and grace. An important part of this is the ability to choose between different gaits in order to travel optimally at a certain speed or to robustly deal with unanticipated perturbations. In this paper, we present a control framework for a quadrupedal robot that is capable of(More)
—This paper introduces a state estimation framework for legged robots that allows estimating the full pose of the robot without making any assumptions about the geometrical structure of its environment. This is achieved by means of an Observability Constrained Extended Kalman Filter that fuses kinematic encoder data with on-board IMU measurements. By(More)
—This paper introduces the concept of hybrid operational space control, a method that unifies kinematic tracking of individual joints with an inverse dynamics task space controller for the remainder of the robot. The proposed control strategy allows for a hierarchical task decomposition while simultaneously regulating the inner forces between the contact(More)
This paper presents the application of operational space control based on hierarchical task optimization for quadrupedal locomotion. We show how the behavior of a complex robotic machine can be described by a simple set of least squares problems with different priorities for motion, torque, and force optimization. Using projected dynamics of floating base(More)
— Developing control methods that allow legged robots to move with skill and agility remains one of the grand challenges in robotics. In order to achieve this ambitious goal, legged robots must possess a wide repertoire of motor skills. A scalable control architecture that can represent a variety of gaits in a unified manner is therefore desirable. Inspired(More)
—This paper presents a state estimation approach for legged robots based on stochastic filtering. The key idea is to extract information from the kinematic constraints given through the intermittent contacts with the ground and to fuse this information with inertial measurements. To this end, we design an unscented Kalman filter based on a consistent(More)
— This paper presents the application of reinforcement learning to improve the performance of highly dynamic single legged locomotion with compliant series elastic actuators. The goal is to optimally exploit the capabilities of the hardware in terms of maximum jump height, jump distance, and energy efficiency of periodic hopping. These challenges are(More)
—This paper introduces a novel batch optimization based calibration framework for legged robots. Given a non-degenerate calibration dataset and considering the stochastic models of the sensors, the task is formulated as a maximum likelihood problem. In order to facilitate the derivation of consistent measurement equations, the trajectory of the robot and(More)