Christian Gaiddon

Learn More
In the corticotroph cell line AtT20, Ca2+ stimulates c-fos mRNA and nuclear c-fos protein accumulation. We show that Ca2+ stimulates transcription of a chloramphenicol-acetyl-transferase reporter gene driven by the c-fos promoter. This effect is mimicked by both constitutively active Ca2+/calmodulin-dependent protein kinase types II (CamK II) and IV (CamK(More)
The p53 protein is related by sequence homology and function to the products of two other genes, p63 and p73, that each encode several isoforms. We and others have discovered previously that certain tumor-derived mutants of p53 can associate and inhibit transcriptional activation by the alpha and beta isoforms of p73. In this study we have extended these(More)
Molecular mechanisms promoting neuronal death in amyotrophic lateral sclerosis (ALS) were investigated using transgenic mice that overexpressed the G86R mutated form of the Cu/Zn superoxide dismutase (SOD1) gene. We observed: (i) alteration of the Bcl-x/Bax ratio and (ii) activation of the transcription factor p53, as deduced from its location within neuron(More)
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates survival and apoptosis of several neuronal populations. These effects are initiated by high-affinity membrane receptors displaying tyrosine kinase activity (trk). However, the intracellular pathways and genetic mechanisms associated with these receptors are largely(More)
Over the last few years, the widely distributed family of reticulons (RTNs) is receiving renewed interest because of the implication of RTN4/Nogo in neurite regeneration. Four genes were identified in mammals and are referred to as RTN1, 2, 3 and the neurite outgrowth inhibitor RTN4/Nogo. In the present paper, we describe the existence of five new isoforms(More)
Sprouty (Spry) proteins are ligand-inducible inhibitors of receptor tyrosine kinases-dependent signaling pathways, which control various biological processes, including proliferation, differentiation and survival. Here, we investigated the regulation and the role of Spry2 in cells of the central nervous system (CNS). In primary cultures of immature neurons,(More)
Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73beta proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73beta than of p53 to bind DNA, most likely due to(More)
To investigate the molecular mechanisms underlying brain-derived neurotrophic factor (BDNF)-controlled synaptic plasticity, we studied beta2-adrenergic receptor (beta2-AR) expression in cultured cerebellar granule cells. We show that, depending on the state of depolarization, BDNF exerts opposite effects on beta2-AR expression. In neurons maintained in low(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) receptors were characterized and their function investigated in mouse pituitary neurointermediate lobe explants. We show that mouse neurointermediate lobes can be maintained for up to 1 month in defined medium. After 8 days in culture, these explants are devoid of any of the original tyrosine(More)
Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we(More)