Christian G. Bochet

Learn More
Chemical inducers of dimerization (CIDs) have been developed to orchestrate protein dimerization and translocation. Here we present a novel photocleavable HaloTag- and SNAP-tag-reactive CID (MeNV-HaXS) with excellent selectivity and intracellular reactivity. Excitation at 360 nm cleaves the methyl-6-nitroveratryl core of MeNV-HaXS. MeNV-HaXS covalently(More)
The selective control of a chemical process by the use of an electromagnetic wave has been a challenging goal for several decades. In this article, we describe for the first time the use of a monochromatic light beam to differentiate two different reactive centers. A direct application of this concept is found in the chemistry of protecting groups. Two(More)
Neuroscience studies require technologies able to deliver compounds with both scale and timing compatibility with morphological and physiological synaptic properties. In this light, two-photon flash photolysis has been extensively used to successfully apply glutamate or other neurotransmitters at the synaptic level. However, the set of commercially(More)
In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the(More)
The title dinuclear Cu(II) complex, [Cu2(C17H13N2O2)4], is located on an inversion centre. The Cu(II) atoms are each five-coordinated in a distorted square-pyramidal geometry by two N atoms and two O atoms from two bidentate ligands and one bridging O atom from another ligand. In the dinuclear complex, the Cu⋯Cu separation is 3.366 (3) Å. In the crystal,(More)
The title compound, C13H12F3NO3, is almost planar if one excludes the F atoms of the -CF3 group [maximum deviation for the other hetero atoms = 0.069 (1) Å], and the dihedral angle between the pyrrole and benzene ring of the indole system is 2.54 (8)°. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming chains propagating along the a-axis(More)
The relationship between macroscopic chirality and chirality on the molecular level was unequivocally established in 1951 through anomalous X-ray scattering. Although this technique became the definitive method for determining the absolute configuration of a molecule, one important limitation of the approach is that the molecule must contain 'heavy' atoms(More)
  • 1