Christian Flindt

Learn More
PACS. 85.85.+j – Micro-and nano-electromechanical systems and devices. PACS. 72.70.+m – Noise processes and phenomena. Abstract. – We develop a theory for the full counting statistics (FCS) for a class of nano-electromechanical systems (NEMS), describable by a Markovian generalized master equation. The theory is applied to two specific examples of current(More)
Electron transport in nanoscale structures is strongly influenced by the Coulomb interaction that gives rise to correlations in the stream of charges and leaves clear fingerprints in the fluctuations of the electrical current. A complete understanding of the underlying physical processes requires measurements of the electrical fluctuations on all time and(More)
We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (F approximately 10(-2)) in the shuttling regime even in the quantum limit, confirming that shuttling is(More)
– We investigate photon-mediated transport processes in a hybrid circuit-QED structure consisting of two double quantum dots coupled to a common microwave cavity. Under suitable resonance conditions, electron transport in one double quantum dot is facilitated by the transport in the other dot via photon-mediated processes through the cavity. We calculate(More)
We employ a single-charge counting technique to measure the full counting statistics of Andreev events in which Cooper pairs are either produced from electrons that are reflected as holes at a superconductor-normal-metal interface or annihilated in the reverse process. The full counting statistics consists of quiet periods with no Andreev processes,(More)
We present a method for calculating the full current noise spectrum S(ω) for the class of nano-electromechanical systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the method to a quantum shuttle. The noise spectrum of the shuttle has peaks at integer multiples of the mechanical frequency, which(More)
We predict a bistability in the photon emission from a solid-state single-atom laser comprising a microwave cavity coupled to a voltage-biased double quantum dot. To demonstrate that the single-atom laser is bistable, we evaluate the photon emission statistics and show that the distribution takes the shape of a tilted ellipse. The switching rates of the(More)
We consider the theoretical description of real-time counting of electrons tunneling through a Coulomb-blockade quantum dot using a detector with finite bandwidth. By tracing out the quantum dot we find that the dynamics of the detector effectively is non-Markovian. We calculate the cumulant generating function corresponding to the resulting non-Markovian(More)
We consider the counting statistics of electron transport through a double quantum dot with special emphasis on the dephasing induced by a nearby charge detector. The double dot is embedded in a dissipative enviroment, and the presence of electrons on the double dot is detected with a nearby quantum point contact. Charge transport through the double dot is(More)