Christian F. Beckmann

Learn More
The techniques available for the interrogation and analysis of neuroimaging data have a large influence in determining the flexibility, sensitivity, and scope of neuroimaging experiments. The development of such methodologies has allowed investigators to address scientific questions that could not previously be answered and, as such, has become an important(More)
Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific(More)
Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external(More)
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation(More)
We present an integrated approach to probabilistic independent component analysis (ICA) for functional MRI (FMRI) data that allows for nonsquare mixing in the presence of Gaussian noise. In order to avoid overfitting, we employ objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e., the(More)
Typically in neuroimaging we are looking to extract some pertinent information from imperfect, noisy images of the brain. This might be the inference of percent changes in blood flow in perfusion FMRI data, segmentation of subcortical structures from structural MRI, or inference of the probability of an anatomical connection between an area of cortex and a(More)
This article discusses general modeling of multisubject and/or multisession FMRI data. In particular, we show that a two-level mixed-effects model (where parameters of interest at the group level are estimated from parameter and variance estimates from the single-session level) can be made equivalent to a single complete mixed-effects model (where(More)
There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just(More)
Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI)(More)
We discuss model-free analysis of multisubject or multisession FMRI data by extending the single-session probabilistic independent component analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans. on Medical Imaging, 23 (2) 137-152) to higher dimensions. This results in a three-way decomposition that represents the different signals and artefacts(More)