Learn More
The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's(More)
Plasmid stability in recombinant microorganisms is a very important requirement for highly efficient plasmid-based production processes in biotechnology. To stably maintain plasmids, we developed in this study an efficient and stringent novel anabolism-based addiction system, which can be widely used. This novel addiction system is based on two components:(More)
In this study strains of Ralstonia eutropha H16 and Pseudomonas putida KT2440 were engineered which are suitable for biotechnological production of 2-methylcitric acid (2MC). Analysis of a previous mutant of R. eutropha able to accumulate 2MC recommended this strain as a candidate for fermentative production of 2MC. This knowledge was used for construction(More)
Traditional intra-firm cost accounting tools are not appropriate in the context of supply chain management, as there are no standards for the definition and composition of costs. This prohibits exchange and comparison of cost data among different supply chain members. Against this background, several activity-based costing models for inter-firm cost(More)
This study describes the biosynthesis of novel sulfur-containing polyhydroxyalkanoates (PHAs), which consist exclusively of hydroxypropylthioalkanoic acid containing thioether groups in the side chains. In addition, the utilization of alkylthioalkanoic acids (=thia fatty acids) by various bacteria was investigated. Based on feedings with propylthiooctanoic(More)