Christian Engelmann

Learn More
NF-κB is dually involved in neurogenesis and brain pathology. Here, we addressed its role in adult axoneogenesis by generating mutations of RelA (p65) and p50 (also known as NFKB1) heterodimers of canonical NF-κB. In addition to RelA activation in astrocytes, optic nerve axonotmesis caused a hitherto unrecognized induction of RelA in growth-inhibitory(More)
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional(More)
Activation of nuclear factor kappa B (NF-κB) transcription factors is required for the induction of synaptic plasticity and memory formation. All components of this signaling pathway are localized at synapses, and transcriptionally active NF-κB dimers move to the nucleus to translate synaptic signals into altered gene expression. Neuron-specific inhibition(More)
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration,(More)
  • 1