Learn More
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell(More)
Conventional centrosomes are absent from the spindle in female meiosis in many species, but it is not clear how multiple chromosomes form one shared bipolar spindle without centrosomes. We identified a female sterile mutant in which each bivalent chromosome often forms a separate bipolar metaphase I spindle. Unlike wild type, prophase I chromosomes fail to(More)
Accurate chromosome segregation in meiosis requires dynamic changes in chromatin organization. In Drosophila melanogaster, upon completion of recombination, meiotic chromosomes form a single, compact cluster called the karyosome in an enlarged oocyte nucleus. This clustering is also found in humans; however, the mechanisms underlying karyosome formation are(More)
We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the(More)
The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively(More)
The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of(More)
EB1 is a conserved microtubule plus end tracking protein considered to play crucial roles in microtubule organization and the interaction of microtubules with the cell cortex. Despite intense studies carried out in yeast and cultured cells, the role of EB1 in multicellular systems remains to be elucidated. Here, we describe the first genetic study of EB1 in(More)
The fission yeast plo1(+) gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new(More)
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although(More)
We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mi-totic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or(More)
  • 1